• Users Online: 43
  • Print this page
  • Email this page
Year : 2021  |  Volume : 10  |  Issue : 2  |  Page : 121-127

Multivariate regression modeling of Chinese artistic gymnastic handspring vaulting kinematic performance based on judges scores

1 Research Division, China Institute of Sports Science; Faculty of Kinesiology, Shanghai University of Sport, China; Research and Innovation Division, National Sports Institute of Malaysia, Malaysia
2 Faculty of Kinesiology, Shanghai University of Sport, China
3 Department of Sport and Exercise Science, Tunku Abdul Rahman University College, Malaysia

Correspondence Address:
Lianyee Kok
Department of Sport and Exercise Science, Tunku Abdul Rahman University College
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/mohe.mohe_30_21

Rights and Permissions

Introduction: Vault kinematic variables have been found to be strongly correlated with vault difficulty (DV) values and judges' scores. However, the Fédération Internationale de Gymnastique Code of Points (COP) was updated after every Olympic Games rendering previous regression models inadequate. Therefore, the objective of this study was to develop a prediction model for vault performance based on judges' scores. Methods: Handspring vaults (n = 70) were recorded during the Men's Artistic Gymnastic qualifying round of the 2017 China National Artistic Gymnastics Championship using a video camera placed 50 m perpendicular to the vault table. Kinematic data were coded and correlated with judges' official competition final scores (FSs). The vault samples were used to develop a mathematical model (n = 65) and to verify the scores against the predicted model (n = 5). Partial least squares regression was established using the statistical software to calibrate and cross validate the model. Results: The goodness-of-fit of a 3-factor model was utilised (R2cal = 90.13% and R2val = 87.30%) and a significant and strong relationship was observed between predicted Y (FS) and reference Y (FS) in both the calibration and validation models (rcal = 0.949, rval = 0.932) with Y-calibration error (RMSEC = 0.1727) and Y-prediction error (RMSEP = 0.1990). Maximum height, 2nd-flight-time and DV were the key variables against FS. Using JSPM, 40% of new samples were within the acceptable range. Conclusion: Kinematic variables and known DV seem adequate to form a JSPM that could offer coaches an alternative scientific approach to monitor vault training.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal